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Security and inspection systems are becoming increasingly automated. Many such systems include mobile
platforms capable of autonomous sensing and analysis of the environment from a multitude of perspectives. This
increased automation shifts the responsibilities of humans from active patrolling and inspection to passive
monitoring of remote sensor information. The operator brings perceptual and cognitive characteristics to this task
which need to be addressed in both system architecture and interface design if desired performance reliability isto
be achieved. A study isreported which examines the impact of these characteristics on system performance.
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1. INTRODUCTION

The use of autonomous systems for remote sensing
and inspection has long been an important design
effort of system engineering. Autonomous sensing
can preclude the need for humansto physically patrol
large areas, such as factories or warehouses, and can
protect them from hazardous environments. In
addition, such systems do not fatigue, or vary
significantly in detection performance over time, as
humans often do. Autonomous systems, however, are
not foolproof. Sensors can fail to detect important
events, or can report false alarms as a function of
physical fault or imperfect analysis algorithms.
Human monitoring is therefore included in most
system designs to ensure proper operation and
improved signal classification (e.g., Everett et al .,
1992). Furthermore, to realize the best economic
potential of such systems, asingle operator is often
responsible for supervising several remote platforms
simultaneously. Thisleveraging of human presence
presumes that significant events will occur for only a
fraction of the platforms at any one time; that is,
designers assume that “worst case” events will still be
within the response capabilities of the human
operator.

Controlling, or even monitoring multiple-platform
systems such as these can complex if the areas under
surveillance are large or if many sensors are
employed. Because human performance tendsto
degrade over time when monitoring systems with low
event rates (the “vigilance decrement;” Parasuraman,
1986), such automated systems usually provide for
operator cueing when a significant event occurs by
delivering an alert signal and/or information about the
event. Thislatter case can involve presentation of a
video image covering the area where the detection
was first triggered. The operator must confirm the
nature of the event, locate it in physical space (e.g., Is
it inside or outside the building? Which hallway or
roomisit in? etc.), and initiate an appropriate
response. Human-machine interfaces for this task
amost invariably provide an overal, two-
dimensional depiction of the surveilled area -- such as
abuilding diagram, displayed on a CRT -- so that the
location of the alerting platform can be determined
and the video image correlated with apoint in
physical space. Thus, the operator must rapidly map
information between 2-D to 3-D representations of the
environment. In addition, many sensors have panning
capability, so the location of a sensor platform does
not fully define the location of itsimage. Although

some systems provide field-of -view markersto aid
thistask, the 2-D to 3-D information mapping must
till be performed.

Operators can learn, over time, what to expect from
sensor images of conventional security and monitoring
systems (e.g., those with fixed, wall-mounted
cameras), based on their known location and
orientation in the surveilled area. The use of mobile
sensor platforms, however, considerably complicates
the operator’ s control task by removing the
predictability of fixed sensor images. Each alert must
be independently interpreted, based on the current
location of the reporting platform(s). Furthermore,
independent patrol patterns of autonomous platforms
open the possibility of multiple signals arising from
the same physical event due to overlapping fields of
coverage (i.e., during those occasions when patrol
patterns come into close proximity). Although such
redundancy may complicate the operator’ s task, there
may be sound reasons for desiring such overlapsin
sensor coverage, such as increased detection
reliability. Therefore, redundant reports may be
expected to occur in some fraction of system events.
In these situations, the operator must map each image
in space, based on platform location, and must
correlate information across images, to generate an
integrated spatial model of the events being reported.

Development of multiple-platform, autonomous
systems such as these, for both security and process
monitoring, are underway at several government and
commercial laboratories, including the Naval
Command, Control, and Ocean Surveillance Center.
These systems support both structured and
unstructured patrolling by autonomous robots, which
search for objects or events based on loosely-
structured criteria (e.g., some combination of
movement, contrast, or temperature thresholds). The
wide variety of settings in which these systems need
to function make stringent demands on automation
capabilities; human presence is very much needed to
ensure reliable performance and appropriate follow-up
response. An information flow diagram is shown in
Figure 1.
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Figure 1. Processing and control diagram of
multiple-sensor security system.

Depending on the degree of automation and the
complexity of the task (e.g., building security with
fixed cameras, or outdoor surveillance with mobile
robots), the operator can spend most of thetimein a
passiverole. All sensor control and raw data analyses
are handled automatically, and the operator is required
to interact with the system only when alerted. From
this point, all subsequent performance is essentialy
manual, as the operator searches and interprets each
display, takes the appropriate action (such as directing
aresponse to the location of the event), and releases
the sensorsto resume surveillance. Contral is, thus,
more “traded” than “shared” (Sheridan, 1992, page
65). Models of human supervisory control (e.g.,
Rasmussen, 1983; Sheridan, 1987) are not readily
applied to tasks such as these, where the operator is
essentially decoupled from the system until an alert
effectively forces a change to exclusively manual
control. A problem with this approach, asin many
automated system designs (Woods, in press) is that the
operator isrequired to perform at precisely those
moments when the system can provide no further
assistance, i.e., the sensors have done their job of
detecting and relaying events. These moments are
also those conditions (e.g., suspected intrusions, fires,
etc.) for which prompt and correct action is essential.

Performance estimates for such complex systems
often rely on extrapolations of operator models
generated from much simpler, single-sensor
applications. Consequence of this approach may
include an overly-optimistic assessment of what the

human-machine system can accomplish, assignment
of too many systems to the control of a single person,
or inadequate human-machine interface design.
Different interface modeling and design approaches
may be required to support operator performancein
such one-to-many control situations. An initial
examination of human performance capabilitiesin
such settings was therefore conducted to demonstrate
the limitations of single-sensor models for predicting
operator performance, and to identify certain task
variablesin need of special interface support.

2. PERFORMANCE STUDY

The selection of an industrial security system asthe
experimental setting was dictated by practical need; a
research effort was required to support the
development of prototype systems which used
multiple autonomous robots as sensing and reporting
platforms. The task neverthelessillustrates general
human capabilities to rapidly assess (pictorial) sensor
information from a number of distributed sources and
to integrate it into a single model of the environment,
which should have wider application.

Three task characteristics were selected for initia
study: the number of displays which had to be
monitored (corresponding to the number of remote
sensor systems), the amount of information to be
interpreted (i.e., the number of images which were
presented at any one time), and the complexity of the
information (i.e., whether the images depicted
separate events or acommon event from overlapping
Sensors).

2.1 Hypotheses

A number of displays used for this experiment was
limited to three. Each display represented a potential
source of task-relevant information from aremote
sensor, i.e., the presence of an image indicated that a
sensor had detected something significant, and the
operator was therefore compelled to examine the
image, if only to confirm afalse alarm. Although not
al images contained atarget (for this application, a
target was a simulated human “intruder”), all targets
were clearly visible in those images where they were
presented. Target figureswere al replications of the
same model, i.e., the figures all looked the same but
were positioned at different locations within the
environment. Because the major influence on search
time isthe size of the search set (Hyman, 1953;
Scanlan, 1977), operator response time was predicted



to increase with larger numbers of displays and with
greater numbers of target figures.

Task complexity was manipulated by controlling
image redundancy. High redundancy was defined as
multiple images of the same object, i.e., each display
showing a different perspective of the same target
figure. Low redundancy was defined as a separate
object in each image. It was hypothesized that the
effort involved in correlating similar scenes, to resolve
the number of actual targets present, would be a more
complex task than resolving images containing
distinct targets and, therefore, high-redundancy
conditions would require more processing time. This
isalso in accord with a prediction by Vickers (1970)
of increased reaction time as a function of reduced
inter-stimulus discriminability.

It was further hypothesized that additional cognitive
processing demands would be required for this task if
the operator had to map images from unpredictable
platform locations (and viewpoints) for each trial, i.e.,
if the operator had to interpret images from mobile
platforms. This additional workload should be
evidenced by poorer performance for trials imaged
from mobile sensor platforms than trials imaged from
fixed-position platforms.

To make the task as redlistic as possible, and to
control for individual speed-accuracy tradeoff
strategies (e.g., Wickens, 1984), subject instructions
for this experiment emphasized accuracy; operators
were told that response accuracy was more important
than speed. Response times were therefore expected
to be more informative than error rates as a dependent
measure.

2.2 Method

Subjects.  Six volunteers from the |aboratory staff
(four males and two females, aged 26 to 32) were used
as subjects. All participants were familiar with the
task environment used in the simulation.

Simulus preparation. An indoor setting -- asingle,
open-bay building -- was selected as the task
environment. This setting was already modeled on a
Silicon Graphics computer system, and had been
previously used for virtual environment applications.
A set of static scenes was generated from this model
by moving through it with a simulated sensor platform
(about four feet above ground level) and capturing
images at various locations and along various
directional bearings. |mages were monochromatic,

and approximately 9.0 x 7.5 cmin size. A human
figure was modeled in the simulation to serve as an
“intruder.” Copies of thisfigure were placed at
varying locations in a subset of these images to serve
asvisua targets. No more than one target was
contained in any given image. Images were displayed
on a Silicon Graphics Indigo computer with a43 cm
(diagonal), high-resolution (1280 x 1024 pixel)
monitor.

A paper diagram of the building was provided for
each trial, which depicted major features of the
interior (e.g., furniture, doors) and which contained
the location of the sensor(s) which had generated the
associated video image(s). An example of such an
image - diagram pair is presented in Figure 2. The
illustration shows an image (from a single sensor) of a
figure standing at the end of a hallway, in front of a
door. Subjects used these diagrams to record their
task responses.

Design. A repeated measures design was used,
which consisted of two conditions for Sensor Mobility
(i.e., fixed-position platforms versus platforms which
were free to change position between trials), three
levels of Number of Displays (i.e., one, two, or three
displays, presented
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Figure 2. Simulated video image of intruder with
diagram of corresponding object locations

simultaneously from a corresponding number of
simulated sensor platforms), three levels of Number
of Figures (i.e., how many images actually contained
atarget figure), and three levels of Redundancy (i.e.,
HIGH, where all displays showed a common target,
MEDIUM, where some displays showed a common
target, and LOW, where each display showed a
unique target ).

A decision was made that each image would contain,
at most, asingle target figure. This necessarily
resulted in an incomplete design (i.e., some cells of
the 2x3x3x3 factorial were not used). Target
detection across displays was the performance of
interest. If afull factorial design had been employed,
some displays would have contained multiple targets,
alowing the task to be completed by straightforward
counting; the desire to avoid this confounding
behavior led to the design approach described.

Procedure. The nature of the security monitor job
was explained to the subjects using standardized
verbal instructions. Response accuracy was
emphasized by explaining that erroneous
interpretations would result in time being wasted by
response forces being dispatched to the wrong
location. A set of training trials was then
administered, which contained at |east one example of
every condition to be encountered in the actua
experiment. A trial began when the images appeared
on the monitor, and ended when the subject had
marked the position(s) of the intruder(s) on the paper
diagram; the experimenter then pressed a key which

recorded elapsed time for the trial. Subjects were
aways told whether they were dealing with fixed or
mobile platforms, and how many sensors were active
in the environment. Other conditions were
randomized. Every trial had at |east one image with a
target figureinit; i.e., there were no completely “false
alarm” trials.

2.3 Results

Main effects from an analysis of variance were all
significant and were in expected directions. Because
the incomplete nature of the design cells prevented
calculation of acomplete ANOVA , amultiple
regression analysis was also performed to gain an
understanding of the simultaneous action of these
variables.

ANOVA effects.  The results of the sensor mobility
mani pulation showed that responses to images from
mobile sensor platforms took approximately forty
percent more time than responses to images from
fixed-position sensors; F(1,5) = 8.97, p < .001.
Response time also increased as a function of
monitoring increasing numbers of displays (F(2,10) =
126.31, p < .001) and as a function of the number of
target figures shown on those displays (F(2,10) =
95.69, p <.001). The redundancy manipulation
showed that system operators took longer to process
multiple independent images than they did to process
redundant ones (F (2,10) = 77.11, p<.001). Mean
response times for subjects are presented in Table 1.

Table 1. Mean response times results, by condition

response time(sec) mean
Sensor fixed 8.91
Mobility mobile 12.15
Number 1 5.96
of 2 9.89
Displays 3 11.61
Number 1 6.97
of 2 10.59
Figures 3 14.01
high 8.53
Redundancy medium 12.45
low 16.59




Multiple regression. A forward stepwise regression
analysis was performed separately for the response
time results of the fixed-platform and the mobile-
platform conditions, because it is unlikely that these
two sensor positioning schemes would ever existin a
single, hybrid system. Results showed that levels of
image redundancy and the number of figures shown
on the displays contributed the most to response time
performance for both types of systems. The number
of displays which the operator had to monitor did not
account for enough additional variance to be included
in either regression equation. For the fixed-platform
condition:

Response Time (sec) = 2.440 + 0.478 (Redundancy)
+ 0.328 (Number of Figures) D

R2 for this equation was 0.5157, F(2,117) = 62.762,
p<.001. For the mobile-platform condition:

Response Time (sec) = 2.035 + 0.477 (Number of
Figures) + 0.343 (Redundancy) 2

R2 for this equation is 0.5342, F(2,117) = 67.083,
p<.001

3. DISCUSSION

This experiment succeeded in highlighting the relative
importance of selected system and display variablesto
operator performance, and provided some indication
of the sensitivity of performance to manipulations of
those variables.

3.1 Analysis

In keeping with the priorities established for the
security monitor’s job, response time proved to be an
effective performance measure. Subjects appeared to
trade response time for some threshold level of
accuracy. It ispossible, however, that an operator
strategy that emphasized rapid response might show
similar patterns of results for error rates (e.g., by
identifying an incorrect number of intruders than was
actually the case, or by locating them at incorrect
positionsin the building). Furthermore, operatorsin
real world settings with larger numbers of displays
might demonstrate even poorer performance than
obtained in this experiment. A modern industrial
security system, for example, may have as many as
125 displays under the control of a single operator.
The most important consequence of such datais that
they demonstrate a potential bottleneck on total

system performance; the system can only be as fast
and accurate as the operator, who is the final filter on
input data and the only initiator of system action.

The most significant factor influencing task
performance was the use of autonomous, mobile
sensors, i.e., platforms whose physical location (and
viewpoint) could change from one trial to the next.
Clearly, information from such sensors took longer to
interpret than information from fixed-position sensors.
The flexibility and expanded sensor coverage afforded
by using such an autonomous system therefore comes
at apricein operator workload, and might.

The experiment showed shorter response times for
trials with redundant images. For a given number of
images, subjects were apparently able to determine
commonality more rapidly than uniqueness. Thiswas
not atrivial task, however, as different viewpoints
used for redundant images were made at different
(apparent) distances from the target figures, as well as
different viewing angles. These changes resulted in
different effective fields of view, and thus to changes
in both aspect and relative size of the target figures,
and to shiftsin the contents of scene backgrounds.

Subjects used in the study were familiar with the
visual environment of the simulation, and knew both
the building layout and the locations of its contents
(e.g., doors, windows, shelves, etc.). Thisresult,
therefore, could have been a function of subject
experience with the particular environment used in the
experiment, or could have been obtained by some
process that worked equally well with any set of
redundant images. Although the issue cannot be
completely resolved here, the results of the sensor
mobility manipulation would seem to support an
explanation based on the inherent redundancy of the
images. If familiarity with the environment were the
essential factor, this manipulation would probably not
have shown such alarge difference in performance, as
all images -- fixed or mobile -- contained portions of
the “familiar” background. Thisconclusionis
indirectly supported by other research (Thorisson,
1993), that used both reaction time and eye
movements to determine that subjects could extract
three-dimensional information from multiple two-
dimensional images using a feature search process;
mental reconstruction of a scenein three-dimensions
was not necessary.

3.2 Application



Results of this study provide some guidelines for
predicting human-machine performance for systems
involving multiple, autonomous sensors. As stated
earlier, systems such as these already exist and more
sophisticated versions are being developed. The rapid
increase in response time for even the modest levels
of manipulations used hereis cause for concern,
especially when newer systems are planned with
larger numbers of sensors and are designed for
operationsin cluttered environments.

Operator activitiesin systems like these do not match
the common functions typical of supervisory control
(Sheridan, 1992, chapter 1). Certainly, the closed
feedback loops found in many human-machine control
systems are not present. Nevertheless, the operator
has a central control function, asit is the operator who
filters and transforms sensor products to produce the
final system output. The human-machine interface, as
the only transfer point of sensor output to the operator,
istherefore essential to system performance. Woods
(in press) has written extensively about the need for
human-machine design which supports the extraction
of task-relevant meaning from input data, rather than
the mere delivery of datato the operator, i.e., to
design for information extraction at the whole task
level. Like the computer applications which Woods
addresses, each image from a sensor platform acts as
one “keyhole” into amuch larger data space. It isthe
coordination of multiple views, or “keyholes,” into a
single picture of this space that is not supported by the
design approaches examined here.

Additional measures could be exploited toward this
end, to improve the human-machine interface and,
thereby, to enhance system performance. Providing
additional visual cues (such as directional lines from
each sensor) on the diagram display, for example,
could resolve sensor views by identifying overlaps
where those lines crossed. This approach would still
require operator processing, however, and consume
additional response time, especially for systems using
higher numbers of sensors. An alternative would be to
provide an inhibitory feature to the display of such
redundant events (Sheridan, 1992, page 289), whereby
only one alert is provided regardless of the number of
overlapping contacts. Thiswould require additional
computer processing, however, to automatically detect
such redundancy. Both of this design concepts are
readily testable, and additional investigations are
being initiated to measure their effects.

A larger issue may be the consequence of accessing
human intervention only when needed in an

otherwise-automated setting. The operator is present
to fill performance “holes” in the sensing and
classification process. The event-driven nature of this
approach, because events are sporadic (yet important),
complicates any effort by the operator to maintain a
current mental model of the environment. An
aternative interface scheme is to reduce the
complexity of the 3-D to 2-D image transformations
when events are detected by providing a2.5 or 3-D
rendition of the layout of the surveilled area. The
operator task would then involve smaller spatial
transformations when examining sensor images,
would assist in visualization of the entire suite of
sensor patterns, and might help to keep the operator
more consistently involved by expanding the utility a
display which is aways present (i.e., unlike sensor
images). This, too, is being investigated.

System applications continue to emerge which require
extensions to models of human-machine interaction,
and which motivate empirical measurement to
establish and scale critical variables. The use of
multiple, autonomous sensor systemsis one such
application. Solutions to these problems can, in turn,
enhance human-machine design for avariety of other
engineering needs, as well.
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